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ABSTRACT

In this report equations are derived for computing static and
dynamic aerodynamic deir vatives from forced oscillation wind tunnel
tests of volure-stabilized munition models, A linear model is used
for the pitching moment equation which considers small pitch angles
and small volute spring angles (or small perturbations), with no
shift in the center of gravity. The theory represents an extension
of the methods presented in Arnold Engineering Development Center
technical report AEDC-TR-69-208 and in Advisory Group for Aerospace
Research and Development report AGARDograph 121 to two degrees of
angluar freedom,

This document i. subject to special export controls and
each transmittal to foreign governments or foreign
nationals may be made only with prior approval of the
Air Force Armament Laboratory (ATRA), Eglin AFB, Florida
32542,
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LIST OF ABBREVIATIONS AND SYMBOLS

coefficients, constants

acm/ae = Cm pitching moment derivative
a

3Cy,/36 pitch moment derivative

Co * Ch. pitch damping derivative
a

Mq
3C_/3 E‘ itch d i derivati
m oV pitc amping derivative

model diameter, reference arm for moments

(IB + It) moment of inertia of model about pitch axis

moment of inertia of forebody about pitch axis

moment of inertia of volute spring about pitch axis

moment of inertia of volute spring about hinge pitch
axis

unit vectors aligned with body axes of forebody

unit vectors aligned with body axes of volute spring
(It hinge * MeRtT)
mass of iEh.particle

mass of volute spring
stability coefficient
stability coefficient
stability coefficient

stability coefficiont
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LIST OF ABBREVIATIONS AND SYMBOLS (continued)

P point with coordinates x; y; 23
q dynamic pressure = 1/2 o\’2
) Ry separation of ith mass from origin of forebody axes

R¢ separation of volute hinge from origin of forebody axes

- Ty -1 Z mjXe; = separation of hinge origin and tail

3 Mt tail

ﬁ ; CG,positive

3k S reference area

1 : t time

( v free stream velocity

’, § Xy z body axes of forebody

% Xe Ve 2t body axes of volute tail

? 0 air density

é A value of a determinant in Equation 6

] “ 6 pitch angle or pitch angle perturbation

,f 8 volute spring angle; angle at hinge between longitudinal

A axes of forebody and volute spring, or perturbation of

4 ;,‘ this angle

é 4 ratio of damping to critical

;ﬁ a angle of attack

] g ® angular frequency

ﬁ é‘ ) Wy undamped natural frequency of system

g . Wy frequency of forced oscillation in vacuum

8, amplitude of pitch oscillation
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LIST OF ABBREVIATIONS AND SYMBOLS (concluded)

o amplitude of volute angle oscillation
¢ ¥y vy phase angles

Superscripts

) vector

") a( )/dt

Subscripts

W value with wind on

a aerodynamic value

v value under vacuum conditions
B forebody

t volute tail

i property of ith particle
spring

volute structural property of volute
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SECTION 1

INTRODUCTION

Methods have been derived for computing model aerodynamic derivatives
from forced oscillation wind tunnel tests with one degree of angular
freedom (References 1 and 2). These are for small oscillations in pitch
angle of a rigid body. In this report these methods are extended to
cover small forced oscillations in the pitch angle of a body with an
elastic tail, as with a spring volute stabilized model.

The volute (Figure 1) is a light coiled spring device which stores
compactly. In action the coiled spring releases to form a cone-shaped
extension to a munition forebody. This rearward extension stabilizes the
munition and gives a preferred orientation in applications.

The analysis considers linearized equations of motion for small
vi,i0s of the pitch angle 6 and volute angle &, or small perturbations

o1 (hese angles,

As the volute is a light, flexible spring, subjected in use to a
distributed load, it will be~d in nn elastic curve. For the purpose of
analyzing the inertia torques, this curve is idealized to be a straight
line. However, the results are applicable to the real volute, so long
as the volute angle § remains small, with Cos & approximately one and
no important shifts in the center of gravity of the model or the moments
of inertia. For the curved volute, the volute angle § may be defined as
the angle between the longitudinal axis of the forebody and the line
connecting the center of the volute hinge with the center of the rear
face of the volute spring. The angle § is taken positive when the volute
axis iies below the longitudinal axis of the forebody.
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Figure 1. Volute-Stabilized Model with Positive Angles 6 and §.




§ SECTION 1
% THE SOLUTION OF AN EQUATTON FOR FORCED
3 OSCILLATION OF A LINEAR OSCILLATOR
; . Consider the equation:
-
18 - . 2
i 5 " 0+ 2cwne tw, 0= TCoswt ; (o<zg<l) (1)
3 3 The solution consists of a solution to the homogeneous equation
; o plus a particular solution. The solution to the homogeneous equation
353 is:
:
] ‘/'—'2‘
< 6. = [Kexp (-zw t)] Cos(uw,t ¥ 1-z + ¢) (2)

where K and ¢ are functions of initial conditions. The particular
solut:ion is:

T
A ,‘,:v#ﬁ'mw‘;'mgw;.-‘-mg@mﬂ?mr (M

E:f ep = ASinwt + BCoswt (3)

Upon substituting 6 = 6. + @, into Equation 1 and collecting coefficients,
one gets:

FIEWIEIS

2 2
(Coswt) [-w B + ZCwnw A+ © B] + Sinwt

(4)
2 2
[-w A-2Zw w B + w_ A] = TCosut
3 n n
4 2 2
13 “2zuuB ¢ (u vy ) A= 0 (5a)
&
-
. 2 2
4 (-w + @y} B+ 200 0A=T (5b)

i
eI TS S

B

b

LR

o
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2 2
0 (-u + 0y )

2
T 20w, @ -T (-
B = z = Sl (6a)
2 2
-2cwnw (~w + w0y ) 4
2 2
(-w + Wy ) ZCwnw
A= -2Tgw,w/b (6b)

2
Ifws= W then B = 0, A = T/2cwn , and the steady state value of 0
TSinw,t
e 2
2Cwn

[}

is 8 =29 = eoSinwnt, where 9, is the amplitude.




SECTION 111

FORCED OSCILLATION AT SYSTEM UNDAMPED NATURAL FREQUENCY
(SINGLE DEGREE OF ANGULAR FREEDOM)

This section presents a portion of the theory developed in References
1 and 2 and is included in the interest of completeness. The pitching
moment equation may be taken as

16-Mg8-Mgo = TCoswnt; o % = -M /I (7

where 6 is the perturbation of pitch angle, and the perturbation torque
is TCosugt.

After transients have died out

6 = 6, Sinuj,t (8a)

8 = 8, w, Cosut (8b)

. - . 2 . (8(:)
9 = eown Slnwnt

ORI Aot b )

Substituting into equation 7,

£

¥

s
3
7 1B
3
A
) R
B
1
<EL
s
L
3
2
e
3
k.
2
N
g': 3
.
7
.
3
L =
’
Y
3
H

M6 w =T
6 0 n (9a)
-Mé = T/eou}n (9b)
Since the structural damping coefficient My is inversely
proportional to the frequency
My = M+ M (2!); M, o= Mg _‘.v(mv > (10)
8w B2 o \on) fa T W O\




2V w
= » -{v]e v = C C 11
“ng_* qsd? [M My (Tn)] " (o

m
a % ' 4
Subscripts: J
a = aerodynamic value
v = value under vacuum conditions )
w = value with wind on

Wy =\/—Me/I' (12a)

My =M, - Mg (12b)

1
C =—3|My - My (=C 12¢
my qSd [ ew ev] m, ( )

For small amplitudes these are local values of (Cmq + Cp.) and Cp .
o o

: The values of § (and later §) are taken as perturbation values, so that
' Equation 7 may be used to obtain the derivatives over a range of angles
of attack.
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SECTION IV

INERTTIA TERMS IN PITCHING MOMENT EQUATION FOR
VOLUTE STABILIZED MODEL WITH TWO DEGREES OF FREEDOM

The model is taken to be rotationally symmetric about the longitudinal
axes of the forebody and the tail. Consider a body axis system with origin
located on the pitch axis and the longitudinal axis of the forebody, x axis
forward along the longitudinal axis, y axis the pitch axis, and x,y,z a

right-hand set of axes. Let unit vectors aligned with these axes be
> 5 > ->
i,j,k. Let R; be a vector from the origin to the point P; (X§,Y1:21) >
-+ > > >

Ri = xjiey;jezik, with my the mass at P;(xj, Y3, 2i). The angular

velocity of the axes is:

i
<
(o

-
W

The inertia torque terms are obtained as:

d . > d > >
dt (angular momentum)g = dt%mi R; @ R; (13a)
For the forebody:
xi=yi=zi=xi=yi=zi=0
—.)' -> -> . -> ->
Ri =uw @® R, =9 [-xik+zi1]
-y -~ >
(angular momentum)B =}EmiRi @R (13b)
angular momentu?n = 9 . 2 53 - i- X
( gu )B Zml [(xi + zi )J xiyil yizik] (lsc)

B
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> >
1 = - = O
Frop symmetry, Y. m, ('Xiyil) ) m, (yizik)
B B

- Ty 2 2
(angular momentu'm)B = ej)B,mi (xi * 2y ) (13d)

> > > >
Using the formula, j%—(ﬂj) = {%} j + H (w® j), one notes that

-> > .
here w®j =0 , as there is no rotation about the roll and yaw axes.

o . -> "
Therefore, (inertia torque)B = e}:nﬁ(xiz+ ziz) j= IB 8j (13e)
B
where I =Z m, (x.2+ z.2)
B = i i

To compute the inertia torque of the volute tail about the pitch axis,
let an auxiliary set of axes, XesYerZes be located with oirgin at the tail

hinge center (intersection of longitudinal axes of the forebody and tail),
with xt forward along the longitudinal axis of the tail, y, parallel to
the pitch axis, and X¢sYts2¢ @ right-hand set of axes. The X¢ axis is
inclined to the x axis by the volute angle §, the volute longitudinal axis
is here idealized as a straight line. Let the vector from the origin of
X,y,2 to thg~q£?§in of x.,t.,x be (-Rei). Let unit vectors aligned with
L A be i.j.k. Then for a point Pi (xi,yi,zi) with mass m; located

i
on the tail, and with (Xt’yt’zt) coordinates (xti’yti’zti)'

> > ~ ~ ~
= -R i i ] k
Ry = RA+ X1+ Yy * 2y (14a)
> i > > > R T <
R1 = (Ri°1) i+ (Ri'g) j o+ (Ri'k)k (14b)
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[ar——,

-> > >
= (- Si i j -x ,S8iné + z _Cosd)k
Ri ( Rt + xtiCosG + zti Sind) i + Yei) + ( xtl in ti )

(14¢)
Here . . . "
X =y =2 ., =X =y =z =0
t1 ts t1 t1 t1 t1
E o Si Coss)i c sing)k] + » ® R
= - + (- - .
i [¢ X, ;Sins+z 0s§)i + ( X, ;C0s6-2, .Sing) ] +0@® R.;
(14d)
> >
w=3j9
T . > >
Ry = 6[(~xtiSin6 + ztiCosa)i + (—xtiCosa-ztiSina)k] +
(14€)
. - -
0[-(-Ry + x;;Cosé+ z,.Sind)k + (-x¢;Siné + z,,Coss)i]
(angular momentum). = 3 R é i4f
g e MmO R (14£)
From symmetry, the terms in the summation involving yti drop out,
(angular momentuﬁ)t =§: my { 5[(-—Rt + xtiCosé*ztiSinS).
t
. > >
(-xtiCosé-zti51n6)(~J)+ (-xti81n6 + ztiCoss)(uxtiS1n6 + ztiCosé)j]
: R Cosé + Siné R i (14g)
+0[(- ++X¢; Cos z,;Sin ) (- ¢*Xy;Cosé + zt151n6)

-5
+(-xtiS1n5 + ZtiCOSG) (-xti81n5 + ztiCosc)]J }




> -> .
t = 3\ - 30~ z i
(amgular momen um)t iy '"i{ S RtxtiCo,G Rt‘t151n5
t

(14h)

2 21.01n 2 2 2 :
+X . “+ z . “]+6[R “-2R x .Cosé + x ,“+z .¢-2R z .Siné }
ti ti ] [ t t ti ti ti t ti né]

We note that - z: miéthtiSinG = -ZEZnHéthtiSiné = 0 because of symmetry.
t t

— '?-~ M 2
(angular momentum); = J}%,mi{e[-RtxtiCosd+xti 2 ]

(141)
. 2 2 2
+8[R, -2R x,;Cosd+x, s +2.¢ ]}
- - — d >
(inertia torque)t =E;-(angu1ar momentun)t (15a)
- : > TS Sy 2
(inertia torque)t =] - mi{a[-RtxtiCoss * Xeq o2y ]
; (15b)
hid 2 02 .®
‘ +0fR_“-2R osd+x_ 2z 2] +6 ing i
| (R, txtiC)s xti+zti ]+ [Rtxt181n ]+66[2RtxtiS1n6]
:
: Assuming §, 6, and ¢ remain small, the last two brackets are higher
order terms and may be neglected.
. n - -+ o 2 2
(inertia torque), = nglni{é[-RtxtiCosé ¥ Xeg * 245 ]
(15¢)

6[R 2 2R x,.Cosé X 2+ 2
+ -
t tti so ¥ ti Zti ]}

10




Lo i

: Here
¥
'2~’"iRtxtiC056 = m R ¥, Coss
t
H
H
t 2 2
: . . T . Yl = .
%;"H(xt1 Yoty It,h1nge
-3 m (2R x Cos§) = 2m R F Cosé
- t 1 t ti ttt
3 whereSTnﬁ = my and ?i is the separation of the tail CG from the tail origin
: t

: at the hinge.

Abbreviating
2 m. [-R.x,Cosé % 2.:%] = mRT.Cos8 + 1 = K
; n m; [-RyXy1C088 + x5 + 245 ] = mR.T Coss + t,hinge = "t
) 2 2 2 2 - _
T mj [Re -2Ryxp3C088 + X3 + 2¢5 1 = meRy +2meRyTpCos8 + It,hinge' I
I-= IB + It
' The inertia torque of the model is then given by
Inertia torque = 19 + K¢ 6 (16)

. obgatdh & o, et —
bty T G v Y
vl - - . i A aas im ' PG i
T B RS N A TR L 7
1y
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SECTION V

WIND TUNNEL FORCED OSCILLATION AT UNDAMPED NATURAL FREQUENCY
OF SYSTEM WITH TWO DEGREES OF ANGULAR FREEDOM, LINEAR MODEL

The linearized pitching moment equation (1,2) may be taken as
Is + KtG—Mée-Méé-Mee-M65 = TCoswt (17;

where 6 and § are perturbations of the pitch and volute angles, and the
perturbing moment is TCoswt. Here the unperturbed value of the volute
angle § is used in evaluating the constant values of T and K. For the

wind-on conditicn 1in the tunnel, the coefficients would have a subscript
w and for vacuum conditions, these coefficients would have a subscript v.

In the dynamic tests, the model is subjected to a forcing torque,
TCoswt. Assuming that g and § are positively damped (Mé<0, Mé<0), the

transient solution to the homogeneous equation damps out and disappears
from the motion. The remaining motions of 6 and § are then sinusoidal
vibrations at frequency w. Equation 17 may then be split into separate
equations for 9 and & as follows:

16-Mz6-My8 = ACosut + BSinut (18)

K,6-M3é-Mgé = (T-A) Coswt - BSinut (19)

Here A and B remain to be determined.
The technique of forcing at the undamped natural frequency w, of
the system, where wnz = -Mg/I, is to vary w until 6 = .8, Sinwt

(=8,Sinw t); w, occurs when the phase angle between 6 and the forcing

moment is 90°. This drives B to a value of zero.

For w = Wy

12




%‘

3

§

% 8 = 8,Sinwyt (here 8, is the amplitude)

é é = SownCoswnt (20)

1 6 = -6 w251

: = -0,w, Sinwyt
; : . I6-Méé-Mee = -Mg8ownCosuw,t = ACoswpt
.
1 (21)
Jd B Me = -A/eown

} . Using the subscripts

:. a = aerodynamic value

¥

w = value with wind on
v = value under vacuum conditions

% onr: gets
ik Mg = -A/8qun (22)
¥ w
? 4 Mg = My -Mg [V (23)
% 9a 6, Oy W)
§ 3
i
AR -
-k c +C_.\=M [==
'*: 4 (mq ma) ea(qu2> (249)
§
!
{ My = My My 3 Mg = -Tw 2
: 6a = "0y 6y 6 Lo, (25)
H

C =My /qSd
LS (26)

The wind on values of the coefficients will be known when the
quantity A has been evaluated and the vacuum values have been determined.

13




At the same time, § = COCos (wnt + ¢) where 60 is the amplitude,

¢ is the phase angle, and 8, and ¢ may be measured.

§ = GOCos(wnt +¢)

S = -wnGOSin(wnt+¢) 27
8 = -u %8,Cos (u t+o)
K S-M;8-Ms = (T-4)Cosuw, t (28)

2 . s N
_Ktwr GOCos(wnt+®) + Mswn6051n(wnt+¢1

M§C T-A)C (29)
-Ms, os(unt+¢) = (T~ ),oswnt

2 . . . .
-Ktwn 6O(Cos¢C05wnt—Sln¢Slnwnt) + Mamn60(81n¢Coswnt
(30)
+Cos¢S1nwnt)—Maoo(Cos¢Cosmnt-Sln¢Slnwnt) = (T—A)Coswnt

Upon equating the coefficients of Coswnt and Sinw,t on the two
sides of the equation, there results

2 L3 * . —
Ktwn 6081n¢ + MawnGOCos¢+M66081n¢ =0

(31)
2 . . I
-Ktwn 6oCos¢ + Méwn6051n¢-M660Cos¢ = T-A
On rearranging,
. M (S _ 2_,
Md(wnCos¢) + €(S1n¢) = -Ktwn Sin¢g (32)

14




i
4
.
|
g,
{ 2
b * H - = - i
3 Mé(wn6051n¢) M6(60C05¢) (T-A) + Ktwn GOCos¢
S whence
3
‘ %si Siné
) -Ktmn Sin¢ in
I .
3l
. 2
. (T-A) + Kiwq 6,Cos¢ -8,Cosé
; % My =
1 “nlo
n
| ¢ w Cosé K. Si
X E n - t“’n iné
: . ,
wn6081n¢ (T-A) + Ktwn 60Cos¢

o e e .

k:;
1 M. =
! 6
; “9n8,
2 On expanding the determinants,
. (T-A)Sin¢
3 i
; no
- [(T-A)Cos¢ + K w 25 ]
M. = tn o
=
< 1 So
Solving for (T-A),
;;¥ § M -§ M_-K w 25
£ . ToA = “n®o"s 06 tn O
: é S1né Cos¢
3 15
4

(33)

(34)

(35)

(36)

(37)

(38)
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In order to evaluate (T-A), one method would be a static determination
of Mg so that the far right member of equation 38 could be evaluated.

Another method would be forced oscillation at the undamped natural fre-
quency of the volute. One has

_ _ Static Moment
Ms = Mg * Msspring = 3 (39)
W
volute
whence
Cng = M5 /aSd (40)
a
A = T-(T-A) (41)
. _ (T-A)Sin¢ _ . .
Ms === =M * Msspring (42a)
W n$ a P
° volute
MGspring - M5v (ﬂ> (42b)
volute “n
C .= (M -M; A
mg < S, 6spring) qsd®? T ¢, (quZ) (43)
volute

There remains the problem of obtaining Mév and Mev. The model is

oscillated in the vacuum tunnel at the undamped natural frequency of the
system. The equation is

10+K, 8-Mo0-M 8-M0-Mc§ = T, Cosut (44)
(similar to Equation 17)

16
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After the transients have died out and w = w, , one has
v

!

(Ie—Mée-Mee)V = C Coswnvt (45)
K S-M' 5-M, § = (T,-C)Cosw_ t (46
97" ° s, 1 n, )

9 = eoSinant
§ = w, 9.Cos t
”nv 0 w"v 47

. 9
6 = -w 6,.Sin t
n, Yo wnv

(=Mg)yon 8= C (48a)
v
Mo, = ~C/un % (48b)
Mg = -Tw, 2
0y “n,, (49)

At the same time, § = SOCOSCwnvt + ¢7) (by analogy with Equation 36)

(T-C)Sing;
8 (50)

2
-[(TI—C)C05¢1+Ktan 5]

5 5 (51)

17




R e

i)

by
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2
-SOMGV—Ktan 60; C= Tl-(Tl"C)
T,-C = (52)
Cos¢1

The restoring moment coefficient of the spring volute Ms,» may be

obtained by static experiment, or from forced oscillation at the undamped
natural frequency of the volute, so that C may be obtained from Equation
52, and Mg and Mg from Equations 48 and 49.

v

18
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SECTION VI

WIND TUNNEL FORCED OSCILLATION AT A FREQUENCY OTHER
THAN w,; TWO DEGREES OF ANGULAR FREEDOM, LINEAR MODEL

The equation of motion may be taken as (same as Equation 17)
Ie+Kt6—M96-M66-M66-M66 = TCosuwt (53)
After decay of the transients, there results

Ie—Méé-Mee = ACoswt + BSinuwt

(54)
th-Méé-MGG = (T-A)Coswt - BSinuwt (55)
where AGB remain to be evaluated.
The remaining motions are
8 = 6,Cos(wt+y,) (56)
§ = GOCos(wt+w2) (57)

where ¥41,¥,,08,, and §, may be evaluated from the test. Substituting
from Equation 56 into Equation 54

-Ieowz[CoszCoswt-SianSinwt]+Méeow[sinw1Coswt+Cos¢ISinwt]

(58)
-Mee [Cosy,Coswt-Siny Sinwt] = ACoswt+BSinuwt
o

Upon equating the coefficients of Sinwt and Coswt on the two sides of
Equation 58, there results

. . 2 .

Me(wBOCoswl) + MeeoSmw1 = -Tw eoSm\b1 + B (59)
. - 2

Me(w9051nw1) Me(eoCoswl) A+ Tw eoCosw1

(60)

19




EESR LI L e v

2 . .
~Tw 6081nw1+B eoSmw1
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A+Iw260Cosw1 -GOCoswl
! (61)

<
De
1]

1 —weo

2
wOOCoswl -Iw eoSinw1+B

. 2
w8, Siny, A;Iw 8,Cosy, (62)

-weo

On expanding these determinants and simplifying there results

ASiny, + BCoswl

My =
6 meo (63)

] s .u
—[ACoswl + I 60-851nw1]
Mg = (64)

]
0

Upon substituting from Equation 57 into Equation 55, there results

2 . . .
-Ktsom [Cosw2Coswt - S1nw281nwt]+Mé6°m[S1n¢2Coswt + CostSinwt]

. . 65
—MGSO[CostCoswt - Slnwzslnwt]=(T-A) Coswt - BSinwt (65)

Upon equating the coefficients of Sinwt and Coswt on the two
sides of this equation and rearranging, one gets

20
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. 2 .
Mé(méoCOSwz) + M66031nw2 = -Ktw 6081n¢2-B

2
° i 'M = T-
MG(wGOS1nw2) 6GOCosw2 (T-A) + Ktw GOCoswz

Solving,
2 . .
-Kew'§ Sing, -B 8,51y
2 '
(T—A)+Ktw GoCoswz -GoCos;,;2
M6 =
-wé 2
)
5 C K w8 Siny, -B
w o oslp2 - tw o 1nw2-
. 2
»6051n¢2 (T—A)+Ktm GOCosxp2
Ms = 5 2
-0 o
Simplifying,

(T-A)Sinwz-BCosw2

ws
)

. 2 .
-[(T-A)Cosw2 + Kew 60+881nw2]
8 8

0
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(66)

(67)

(68)

(69)

(70)

(71)




Further infrvmation is needed to evaluate A and B, If M6 = M6 +
w

a
MGsp . is known from static tests, Equation 71 is one equation involving
ring
volute
A and B. Another relation is Equation 64, if M, =M, + M, , and M, is
Oy Oa By 8a
known from static tests, and Mev is known from vacuum tests. Assuming
these values are known,
AC BSing, = -M.0 -Tw’
osw1 - 1nw1 = - eeo' w eo (72)
. 2
—ACosw2 + BSlmp2 = -MGGO-TCOS¢2-Ktw 60 (73)
M6 -Tw’6 '
Mgt Yy -Siny;

2 .
-MGGO-TCost-Ktw 60 Sinys

74
A~ (74)
Sin(y,-91)
2
Cosw1 -Meeo—Im eo
-Cos T K 2
v, 'Mﬁso" Coswz- £ 60 5)
B = -
Sin (wz-wl)

It may be observed that when w = u, Py = -90°, B = 0, and (T-A) has
the same value as that given by Equation 38.

These values of A and B may be substituted into Equations €1 and 62
to evaluare Méw and Mew. The quantities Mév, Mev, and M&v may be obtained

as in Section V by vacuum tests at the system undamped natural frequency.
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They may also be substituted into Equations 70 and 71 to get Méw and de;

however, Me
w

static tests and vacuum tests.

The remaining equations for the aerodynamic derivatives are the

following:

Mn - Mo Mo (wV )
ea ew eV —(;

(]
n
=
=)
~
Ke)
w
o

. e . Me = M (S
Msa = M&w -Ms spring’ Msspring - Mdv( u»)
volute volute

2
C . = Mé (2V/qSd )
4 a

8 s Maspring
a W volute

C = MG /qSd
[ a

23

and Ms have been assumed known in this application from
W

(76)

(24)

(25)

(26)

(77

(78)

(79)

(40)
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Jizeude

The restrictions on the above solutions are

RN (i SN D K T

1. Configurations with symmetry about the pitch and yaw planes or
greater symmetry.

YT

2. First order linear aerodynamics.

e

3. Small perturbations.

AT L4

4. No significant changes in CG location or moments of inertia
during the motion.

5. System damping causes initial condition transients to decay.
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SECTION VII

CONCLUSION

Equations have been obtained to compute volute-equipped munition
model aerodynamic derivatives from forced oscillation wind tunnel tests
of pitching motions. These methods represent extensiocns of the methods
outlined in References 1 and 2. They require certain addiiional values
of coefficients which may be obtained from static and vacuum tests in
the wind tunnel. Structural and aerodynamic contributions to pitch

damping and overturning moment coefficients may be computed separately
by the process outlined.

It is believed that within the limitations of the linear theory

outlined, these equations should serve in reducing data from forced
oscillation wind tunnel tests of volute-stabilized models of munitions.
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